
ADAII8 289 STANFORD UNIV CA COMPUTER SYSTEMS LAB F/S 9/2

SOFTWARE RELATED FAILURES ON THE IBM 3081: A RELATIONSHIP WITH''- TC(U)

JUN 82 0 J ROSSETTI, R K IYER OAA629-82-K-0105

UNLASSIVIUE CSLTN-209 ARO-18690.2-EL NL

mommohmohmomhu
smhhhhhhmhhhI II|IIIIIhIII

*SIECURIV ' CLASSIFICATION OF THIS PAGE (lflen APO 1. 90,eo2E- M oL
REPORT DOCUMENTATION PAGE E

1REPORTy NUMBER 12 O73. RCCIPIENIS CATALOG NUMBERt

CRC Technical Rpt. 82-8 7 77 ___________NM

. TITLE (and Subtitlej 5. TYPE OF REPORT & PERIOD COVERED

SOFTWARE RELATED FAILURES ON THE IBM 3081
A RELATIONSHIP WITH SYSTEM UTILIZATION

S. PERFORM4ING OG. REPORT NUMBER

7. AUTHOR() S. CONTRACT OR GRANT NUMBER(a)

David J. Rossetti and Ravishankar K. Iyer ARO DAAG-29-82-K-0105.

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
Center for Re iable Computing DD F 2222 Prject
Computer Systems Laboratory
Stanford University, Stanford CA 94305 No. P-18690-EL

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

U.S. Army Research Office June 1982
Post Office Box 12211 13 NUMBER OF PAGES

Research Trianale Park. NE 27709 46
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) IS. SECURITY CLASS. (of this repot)

Dr. William A. Sander, Electronics Div.,
U.S. Army Research Office
P.O. Box 12211 ISa. DECLASSIFICATIONoDOWNGRADINGos~ P.O.SCH EDULEResearch Triangle Park, NC 27709 S_ ______

X) IS. DISTRIBUTION STATEMENT (of thA Report)

c % Approved for unlimited public release; distribution unlimited.

DTIC
1E 17. DISTRIBUTION STATEMENT (of Ihe abstract entered in Block 20, if different roam Report)

N/A AUG 17 IM8

III. SUPPLEMENTARY NOTES

The views, opinions, and/or findings contained in thisrport are
those of the authors and should not be construed'as an-official
department of the army position, policy, or decision, unless so
designated by other documentation.

SIII. KEY WORDS (Continue on revere slde If neceear7 and Identify by block nuber)

software reliability, workload,.statistical failure models,
data analysis.

CD 20" STRAC (Continue o n reverse. ;J;i neery end identify by block number)

This paper presents an anlysis of software-related system failures
on the IBM 3081 at SLAC. We find three broad categories of
failures: error handling, control or logic problems and hardware-
related. A statistical analysis shows (not unexpectedly) a
decreasing failure rate with time. This is especially true in the

~early part of the study. Not withstanding the decreasing failure
4.2 with time, we find that the occurrence of failures is strongly

correlated with the t1e and lev-l nf =B. over)

DD I F 1473 EDITION OF I NOV 6S IS OBSOLETE

SEURITY CLASSIFICATION OF THIS PAGE "

-~~ 17. 820805OO-

- HmVY CLAPUPCATIOM OF 1,3 PAO6fU3 ate

'>workload prior to the, occurrence of a failure. For example,
it is shown that the risk of a software-related failure
increases in a non-linear fashion with the amount of
Interactive processing, as measured by paging rate and system
overhead. The paper employs a statistical model to describe
the load dependency and offers explanations for the observed
phenomenon.

/tt

'Acee SIon For

"; I,,tif'C.i-,,o r

F Ditiut icn/

Av±Lb2ity oades

AVail and,'oj

MaCURITY CLASSIPICAION OF "'I PA@SIWhM Dae Xnfeee.

S- .*~ ~ '-. .- -

C rter for
' 'm"Qellable

onputlrg

SOFTWARE RELATED FAILURES ON THE IBM 3081:
A RELATIONSHIP WITH SYSTEM UTILIZATION

David J. Rossetti and Ravishankar K. Iyer

CRC Technical Report No. 82-8

(CSL TH No. 209)

June 1982

CENTER FOR RELIABLE COMPUTING
Computer Systems Laboratory

Departments of Electrical Engineering and-Computer Science

Stanford University
Stanford, California 94305 U.S.A.

This work us supported in part by the U. S. Army Research Office under
contract number DAAO29-82-K-0105, and by the Department of Energy under
contract number DE-ACO3-76FOO515.

p

Analysts of Softeare Related Failures on the IBM 3081s
Relationship with System Utilization

David J. Rossetti and Revishankar K. Iyor

CRC Technical Report No. 82-8

(CSL TH No. 209)

June 1982

CENTER FOR RELIABLE COMIPUTINS
Computer Systems Laboratory

Departments of Electrical Engineering and Computer Science
Stanford University

Stanford, California 94305 U.S.A.

ABSTRACT

This paper presents an analysis of software related system failures on
the IBM 3081 at SLAC. We find three broad categories of failures: error
handling, control or logic problems and hardware-related. A statistical
analysis shows (not unexpectedly) a decreasing failure rate with time.
This is especially true in the early part of the study. Not withstand-
ing the decreasing failure rate with times we find that the occurrence
of failures is strongly correlated with the type and level of workload
prior to the occurrence of a failure. For example, It is shoen that the
risk of a software related failure increases in a non-linear fashion
with the amount of interactive processing, as measured by paging rate
and system overhead. The paper employs a statistical model to describe
the load dependency and offers explanations for the observed phenomenon.

Immudst software reliabil'ity, worklead, statistical failure medals,
data analysis.

.9!

CONTENTS

Abstraot I

1. INTRODUCTION. 1

2. BASIS AND PERSPECTIVE 3

3. SOURCES OF DATA 6

Failure Data 7
Performance and Utilization Data. 8
Hatching Software failures and System Activity 9

4. SOFTMARE FAILURE CHARACTERISTICS 11

Statistical Tests 14

5. SOFTUARE FAILURES - DEPENDENCE ON SYSTEM ACTIVITY 16

Distributions of Failures and System Activity 18
A Software Load Hazard Model. 21
Hazard Plots 23

6. VIENS ON OBSERVED RESULTS26

System Design Assumptions 27
Error Handling Failures 28

Hardware Induced Errors26
Non Hardware Induced Errors 30

Software Control Errors 30
Discovery of Latent Errors 30
Space and Time Violations31

Gradual Deoay of the System32

7. CONCLUSON..33

8. ACKNOULEDUIENTS 34

REFERENCES35

"I

iii

A. FREQUENCY AND NAZAR PLOTS37

FIgURES

1. Software failures by hour of day (SLAC Triplex) 6

2. Sample failure data 8

3. A one day amples PAEN and TTIME10

4. Hatohing failures and workload 10

S. Theoretioal and empirical Ieibull distributions (odf) 15

6. Average software failure rate (by month)16

7. Software failures by hour of day (SLAC 3081) 17

8. frequency distributions: 1(x), f(x), and g(x 28

9. Example of fundamental and apparent hazards23

10. hazard plots: 10 25

11. Nazard plots: PAIEOUT 25

12. Hazard plotes TTIIE 25

TABLES

1. Man Time Between Failure comparison..........

2. failure and repair statistits CSLAC 3061)12

3. software failure patterns. 14

'4

1. INTRODUCTION

The highly interactive and diverse nature of modern day systems has made

high reliability a central issue in computer system design. Host

researchers in the area would agree that it is not feasible to guarantee

a perfect system, either in hardware or in software. Accordingly,

depending on the nature of the application, it is important to design

into the system the ability either to continue operation in the event of

a failure or to react to a failure in a predictable manner.

Designing hardware systems that tolerate faults is relatively mell

understood, at least from a theoretical viewpoint. However, the problem

of software fault tolerance (especially the question of hardware/soft-

ware interaction) has yet to be well understood CHecht $0]. A reason

for this is that neither the error generation process nor the prediction

problem are easy to comprehend, although the SIFT studies have been an

important contribution Elensley 78] [Hilliar-Smith 81].

Theoretical models can only deal with a restricted class of problems.

Most often it is the problems outside the range of theoretical models

which cause the most severe malfunctions. Accordingly, at this stage

there is no better substitute for results based on actual measurements

and experimentation ECurtis 80]; such results are few and far between

[Donning 30].

This paper presents results of one such analysis conducted on the

VIV370 operating system on the 1811 3081 at the Stanford Linear Acoeler-

&ter Center (SLAC) computation facility.

The Stanford Linear Accelerator Center is engaged in the study of

high energy particle physics. A two mile long linter accelerator and

2

the associated real-time data network provide a vast amount of physical

data for analysis. The SLAC installation (which ms& reconfigured in

February 1981) consists of three processors. There are two IBM 370/161

processors, running the OS/VS2(SVS) operating system, that provide

mainly batch service. The last is an DM 3081 exclusively running the

VV370 (Virtual Machine) operating system. During a typical day, the

3081 complex has approximately 150 time-sharing users with a sizeable

compute-bound background load. Although there is some communication

with the older system, for practical purposes the 3081 is run as an

independent system.

Our general objective was to study the causes of system failures, due

to software, in a fully operational production environment. We intended

not only to investigate the effect of persistent bugs in reasonably

mature software systems, but also to study the interactions with the

rest of the system. In particular we wished to consider the following

questions:

1. What are the most common types of software related failures and

their relative frequencies?

2. Are there any identifiable failure patterns that occur most

often? For example, is an inadequate harduare-softmare interface

a frequent cause of system failure?

3. Is there a relationship between operating system failures and the

usage environment as represented by various measures of system

activity?

4. What inferences can be drawn from our analysis in relation to

both the design and testing of large software systems?

>1-

Our general approach is to assume no model a priori, but rather to start

with a substantial amount of high quality data on softuare related fail-

ures and system activity. Me report on statistioi trends and relation-

ships found in the data with the aim of discovering an underlying model.

The experience gained and the models found mould, in our view, provide

valuable insight into the question of fault-tolerant design in general

and software design in particular. The next section describes the basis

for this work in detail and places related studies in perspective.

2. BASIS AND PERSPECTIVE

The term "software reliability model" is usually taken to mean mathemat-

licl models for assessing the reliability of software (in terms of sta-

tistical parameters such as ?TBr) during the development, debugging or

testing phases, although a few of these models have also been applied in

follow-up operational phases. In this context there have been two dis-

tinct approaches to studying software reliability. In the first, soft-

ware reliability is defined in a manner similar to hardware reliability.

Several competing models have appeared in the literature Ehusa 1980],

and a number of authors have attempted to analyze their suitability; an

approciation of the extent and nature of this discussion can be obtained

from [Coel S0]. There is, perhaps, some evidence to suggest that the

hardware analogy may have been carried too far [Littlewood SO].

The second approach attempts to exploit the close relationship

between software quality measures"(e.g. complexity) and reliability.

The parameters of these models are the attributes of the programs to be

M 1'an Time between Failures

I"

4

studied. There are many measures of software quality, the most uell

known being those proposed by aoohn 78] and [lcCall 773. Both techni-

ques are developed from an intuitive clustering of primitive quality

measures. The main difficulty with these approaches is that, although

there is agreement on what should be measured, there is little agreement

on how best to evaluate and measure them in practice. Finally, even

though each model appears to be valid within its oun assumptions, there

is insufficient experimental evidence available for its large scale

validity.

Research most closely related to the present study is in the area of

analysis of errors and their causes in large software systems. [Endres

75] discusses and categorizes errors and error frequencies during the

internal testing phase of the IBM DOS/VS system. [Hamilton 78] applies

the uell known execution time model [Musa 80] to measure the operational

reliability of computer center software, and [Glass 801 examines the

occurrence of persistent bugs and their causes in operational software.

Another useful studies is [maxwell 78], which tabulates and examines

error statistics on software.

None of these studies try to relate system reliability or ths error

frequencies to the usage environment of the software itself in a system-

atic manner. Results based on such measurements are essential if a sci-

entific basis is to be developed for software reliability evaluation.

The argument for adopting a particular approach is more convincing if

backed by experiments demonstrating its usefulness.

The operational phase of mature software is somewhat different from

the development, debugging, and testing phases. A typical situation is

5t

one where frequent changes and updates are Installed either by the

installation programmers or by the vendor. Often the vendor will

install a change to fix an error found at some other installation, with-

out any notification to the installation management. In a sense the

system being measured the represents an aggregate of all such systems

maintained by the vendor.

An experimental study therefore provides not only a view of the end

product but also gives some insight into the persistent problems. This

information can be valuable both in designing new systems and in devel-

oping testing strategies for new releases.

In an early study of failures on the SLAC Triplex system z [lyer 82J

found a strong correlation betmeen the occurrence of failures (both

hardware and software) and the load on the system as measured by vari-

ables such as the paging rate and the jobstep processing rate. All

failures were considered, not simply the ones which led to system ser-

vice interruptions. Most importantly the effects were such that the

average failure rate for both hardware and software components varied

cyclicly over a band of significant width as determined by the daily

load variations. Fig. I below is a representative histogram from that

study of all software failures plotted by the hour of day, averaged over

1978.

41 A more detailed and accurate analysis on a different system was con-

sidered necessary before such results could be considered representa-

tive. The VM/370 system on the IBM 3081 at SLAC (in service since Feb-

ruary 1981) provided an ideal opportunity in this respect. Ue commence

At the time of the previous study, the SLAC system consisted of two
JIl 370/168s and one IBM 360/91 configured in a triplex mode.

6

SLAC Component Failure Profiles

0.4 x , Hardware

+ - Software

.~0.3

0.2

0 .1

0.0
0 5 10 15 20 25

Hour of the Day

Figure 1: Software failures by hour of day (SLAC Triplex).

by describing our measurements of failures and system activity.

3. SOURCES Of DATA

As explained in the Introduction, me wished to study the occurrence of

failures in relation to the system activity at the time of the failure.

To begin with, we restricted our analysis to all abnormal terminations

of the system. The data on these events came from the system-IPL (Ini-

tial Program Load) log, automatically recorded by the operating system.

Data on system utilization and performance came from the VM aocounting

and performance system. To avoid the collection of misleading startup

data, the first month of normal operation was ignored.

7

3.1 ZAILLhU UB

Failure date for this study originates in an automatically collected log

of all IPL'S of the system, both scheduled and non-scheduled. For the

non-scheduled IPL's the problem is investigated and a determination of

the cause of failure is made. This my involve hardware repair or the

study of a system dump. Finally, the manager of systems or head system

programmer enters the cause of failure. On the basis of their determi-

nation the failures were tagged using the following categories:

1. Narduare (N) - A hardware failure caused the crash.

2. Software (SN) - A software failure caused the crash. If both

hardware and software were involved, then the HS category is also

indicated.

3. Operator induced COPR) - Any human error.

4. Unknown (UNK) - Nothing could be blamed.

S. Repeat (RPT) - A reoccurrence of a previous failure.

lhen software is involved, the follouing additional categories are

defined:

1. CTL - A control or logic problem.

2. ERN - An error handling problem.

3. HSE - A hardware error-handling problem due to lack of robustness

in the software.

4. TIM - A timing related problem.

A sample of the online failure data base created on this basis is shown

in Fig. 2.

I-I

TY4 - 0 11M UcST pow IS1111 aJmstool'a ,IassI sss0121 ae1 81 1:01 ? " amas8111 -mUANNI Ma awaaMeONa iaaons"~ ~ ~~
an: - m asmilsemma 83JUM821813816a ,s3as Cams a ULi

waj P" Car m.akpsasao'sses ISaaea1sa'as 6.16 camn a CI- E
lid - ,ina CWN. 016Ia101 UMota~9s539G* UAStIOU ft1900819s a cvINSWUi -LeniL. an am Ia aps e a.an.aeUS9as 99~61181910~e 19-17 6.41666 amaGPmI Li C* L PPA UME ONNES 5K lgM 55JM1I4SUIW6 NJS3II1613114 S.OW 0.19" asmaImUI *RI lam, FAZUR 11 IMJ U 3aG SISIOU01 'e9aaas 1uf tom 9.10? *.low so

OMAiM 8m1m 300uu ao 47me1""4 ai7aaMaisaes1e. Slates 9as .6" a UOMiAIM am111 PULLIN an 3118 67ates e aOu'e.Aaew1,aa8 8.22 samn IN41aim - POOR' PASMN a 30t : OUPU1*6 asiuaiua11684 9.8us6a NJU.51 0111au Nor~OPNT - Vas am= aeRasIIss' SOE aJLN9116"ultetusaS' itSsAMa a v
INCHi - mus A um. 690.41516.971W 164"1617604410 ..Oa 9.410191 a en'Mus. onu w ao m OiWNS. a&aaieg1s"a'um 116IN.51105U Am amass a cIX.
0100410 si Ceps ma IMu.=1-1 smals sfam' nK8081bt I 'at- CUM' to'a 41%?

figure 2: Sample failure data.

3.2 PEFt~nme &ER uI IjzA~ipD fl

Information an system utilization and performance is provided by the VII

accounting and performance system installed and maintained by the SLAC

computer center. This data is similar in function to the well known IBM

sIIF log Eil 73], although it is generally of superior quality. The

date logged consists of the values of a number of workload variables

relating to each virtual machine. Statistics are logged every thirty

minutes, at logoff, or at disconnect - whichever occurs first. With

careful processing these records provide an excellent view of the level

and type of system activity. The level is indicated by the absolute

values of the workload variables; the type is determined by the nature

of usage indicated by the three general

categories defined below:

1. Overall Execution

a) VTIME Virtual machine processor time (fraction of two pro-

39ooesoors).3

b) TTIIE - Total processor time (VTIIE plus overhead, fraction of

two processors).

2. Interaotive Execution

a) PAeEIN - Total number of page reads (per second).

b) PASEOUT - Total number of page writes (per soond).

a) 310 (Start 1/) - Total number of non-spooled input/output

operations (per second).

3. Others

a) OVERHEAD - Demands placed on the operating system by user jobs

(TTIME - VTIE).

b) PRINT.- Total number of virtual lines printed (par second).

a) PUNCH - Total number of virtual cards punched (per second).

d) READER - Total number of virtual cards read (per second).

3.3 MATCHINn SOFTWARE FAIL A LIR A IYSTEM ACTVIT

In order to analyze the level and nature of system utilization In an

accurate and efficient manner, a uniform data base containing the values

of all the workload variables prior to the occurrence of a failure was

created.

The first step was to create S-minute time averages for all workload

parameters for the entire period of our study (March 1981 through April

1982). A sample of this data for PASEIN and TTIME appears in Fig. 3.

For matching purposes, the workload in a specified interval prior to the

failure was combined with the failure point. This Is illustrated in

3 The 3081 is a *dyadio" or dual processor. Full utilization Is defined
to be 2.0.

L i "' - - -Il IE i IBl ' !; -

10

Fig. 4. After sow experimentation the average load in a one hour

interval prior to the failure uas found to be the most suitable.

PAGEIN/sec TTIME (frac)

1 100

44
s0
40 .. 1

0 5 10 15 20 0 5 10 15 20
im of may Time of Day

Figure 3: A one day samples PABEIN and TTIE

Load Prior to Failure Failure

Time: t+2re UFalr

(hours) 1 w

t=vrage Load in hour tt+l

Figure 4: flatching failures and uorkload.

ii

I'

11

The creation of these data bases rsquired somples processing in order

to minimize the loss of information that invariably acompanies such

procedures. The software system developed for this purpose is disoussed

in [Rossetti 813. The system is highly interactive and allows efficient

handling of large mounts of data of varying formats and complexities.

4. SOTNARE FAILURE CHARACTERISTICS

He commence our analysis by tabulating some example failure statistios.

As a first stop ue compared our results with those obtained for failures

at SLAC on the Triplex configuration EButner 80]. This comparison is

shown in Table 1. It is clear that in terms of ITBF, the new system is

at least twice as reliable as the Triplex configuration.

TABLE I

Mean Time Between Failure Comparison

SLAC Triplex and SLAC 3081 (in hours)

Failure Triplex Early 3081 Late 3081
Type (1978) (IlarSi-Jun 81) (Sep8l-Apr82)

All 23.19 40.41 69.22

Soltuare 33.10 68.29 110.19

Hardware 90.28 90.79 183.60

4 i

12.

Table 2 provides more detailed time-between-failure CTIF) and tim-

to-repair (TTR) statistics for the 3081 system. The columns correspond

to mean, standard deviation, minimum, and maximm values for each meas-

ure. The results are also broken down by the major failure categories

defined in Section 3.1. and are Identified by ro. Me also divided the

time period in our study into two parts: an initial period from March

1981 through August 1981, and a mere recent period from September 1981

to April 1982. There are two reasons for this: first, me expected a

lower NTSF in the early part of system life than in the later; sea-

ondly, the system load began to stabilize and reach peak values much

more often during the second part of the study. Zn interpreting Table

2, note that the sub-categories are not mutually exclusive. A software

failure (SH) could also be flagged with ERR if error handling N5S judged

to be part of the problem.

TABLE 2

railure and repair statistics (SLAC 3081)

13 91710111 PAIUM. TIOW TO 631*33

TM 11 N W ST3163 11"W 11 6 1 msm11

TOTAL ALL 177 53.1 70.23 9.13 4)0.73 6.69 3.94 .t 19.25
CTL 60 136.9 191.0 :. 012.07 6.1 6.73 6." 0.83
an 40 616. 316.01 .5 137.15 03 1.0? 6.63 11.35
S 3 2. 44 19.5 60.62 lw.? 6.8 0.36 9.0 1."M 73 10.70 161.67 6.0 016.n I.* 3.61 6.62 19.8* 01.,0 i16.8 6.17 ::0 S.4 1.37 @.a 11.5

ZOLT ALL 99 "M.. 9.1 6.13 11930 0.49 1.33 6.3 0.1
CTL 23 137.76 119. 6.8 6.70 m .13 9.11 6.63 0.41
M3 a5 19.59 to5.U6 . 11.13 6.85 6.40 O.63 1.6
No it 33.69 4n.n 5.66 i3J.1? 6.85 e.49 e.63 I.6

- 3 "6.7 13.6 :!1* 71 "1 .96 1:0 6.0) 6.15
s6 59 33.329 6 .1 . 4 O.1? 6.85 6 0. 1.

LATI ALL 70 09.83 9.67 0.1? 434.7 .1 . 1.6 . 19.0OL" I1 I17.13 31.02 1.16? 015.0? 6.3 1.31 6.63 5.36
3N 83 31.33 171.73 6.5 970.8 I.63 3.31 6.85 11.

No 14 40.10 43.39 603 13IS.05 6.36 6.35 6.6 1.8

is.9 190 1396.38 6.5T 010.5 11.016.6I3 09 1I6,1 16.81 6.1? 04.5 6.I1 1.96 0.,3 11,8

is the TB? eelums., it Is -interesting to Noe the demtie Imrovement

is reliability between the early' and late data. rer examlet hardware

reliability mere than doubled and software reliability imroved by

almost 66 percent. From the TT colimn we en see that, as expeeted,

hardware failures cause longer down ties (avg. I ber) than software

failures (avg. 0.4 hours). The table 0Oe shoew thet the lengest doun

period as 19.25 hours, and that it was due to a hardware problem.

Table 3 below gives all the unique failure patterns, with their fro-

quenoy of oceurrence. Me notie that failures where enly hardware was

involved account for Just 202 of all system reloads, ails ever 66X of

all oases relate to a softuare problem. That M Includes situations

where both hardware and software mre involved (6X ef the total). In

meat of the hardware/software cases (appreximately 122 of all failures)

a comon scenario was that a hardware failure mde the system go into a

region of the software which was not sufficiently robust to handle the

problem (a "harduare/software error handling probleom). Of the remain-

Ing softuare failures, eontrol problem (33 of all failures) and error

handling preblem dominate (273 of all failures). Synehronizatien and

timing window problems aeent far I6. Me also notice a rather large

share of repeats - approimately 1=.

14

TABLE 3

Software failure patterns

N El RON UNK Ol MQ CW PECMRO C CUM SUICIENT

an IT IT 9."61 9.605
UNK as 4.420 14.134

3 to 1.69 15.0ta
I s1 46 10.169 35.969

IN CYI 54 1n 30.5 56.49?
N CIL Eal 5 105 8.815 59.322

N 43 M* 14.9 8.616
1 149 O."s M 8

N I- M R4 1 13.539 97.740
M IN CL 4 177 3.360 100.000

4.1 STATISTICAL TESTS

In oommon with other analyses of this type, our first test was to inves-

tigate the distribution of the time between failures. A Kolmogorov-

oirnev test oonduoted on the time between failure distribution asoepted

at any level of significance a Neibull distri4ution with the following

den ity function and parameters:

f(t) a a S ts'1 exp E-a t8

wheres a a 0.092 (cehareteristic life of 40.0 hours)

I a 0.647

Simee 8 1.0. this is clearly a distribution uith a decreasing failure

rate in tie. The empirical and Meibull cumulative distribution func-

tions are plotted in fig. 5. This also conforms mith the plot of the

monthly average failure rates in Fig. 6.

SLAC VII Failure Distribution (Veibull)

1.0

0.6

0.4

0.!

figure 5: Theoretical and empirical Weibull distributions Cadf)

16

I -

"so

I -

Ows ad"
so do 6600 600 60

.19060 6060 000a6 0000} -S qO oa H4

- 66mm 6000 6066 so

* 0 060 006aa0 66O0,a 0 g~a 04a100 0000~aa~4Hl441

on amm "M.. -

om em em go O am ONm

F gure 660 0000 00er00 0t006 0000ur 000e 0660 0onth

*. SOF R FALUES * EP4 HDEM GO OHSYM* ATVT

soom 0tt0p o -elote teo ooour 600060 me fu
3 t t 6M o" 00s Z66 6u0ed ON" th0 6660 o rko

!~ ~ ~ ~ ~ ~ ~ ~~~~~m 00it the Gs rbbeNos n fot"rltosisfrafur

- ----- - --------- e---m

figure 6: Average software failure rate (by month)

5. SOFTWARE FAILURES - DEPENDENCE ON SYSTEM ACTIVITY

In this section we attempt to relate the occurrence of software failuresI to the type of system utilization as measured by the various workload

variables. It is envisioned that such experiments would provide insight

into the most probable "cause and ef fect" relationships for software

failures.

* It is to be expected that most wmorkload measures will be cyclic on a

3 daily basis. Accordingly, it mas instructive to examine the mean soft-

ware failure rate behavior over the same period (EBaudry 783. This pro-

17

vided n.t only a quick visualization of significeant failure trends but

as also useful in developing subsequent statiticlal experiments.

ative lead at $LAC and also compares favorably with a similar plot of

6o toI me1 i t tP

I -

5.1 DISTRIBUTIONS 9L FAILURES A SYSTEI ACTIVITY

AS explained in Section 3.1, our data provided us with a set of system

workload measures. In particular, measures such as the paging (PAGEIN

and PAGEOUT) and input/output (S1O) rates provide a measure of the sys-

teI interactive load, while measures such as TTIMC and VTIPlC provide a

general view of the CPU usage. The variable "OVERHEAD", derived from

the difference between TTIlE and VTIFIE. is a direct measure of the

demands being placed on the operating system by users' programs (actu-

ally virtual machines).

Recall that the data base developed contains not only the values for

the specified workload variables to a five minute resolution but also

the values of the same variables matched with failure times. From this

data three types of distributions were generated. The first, A(x), is

simply the distribution of the workload in question.

2(x) = Pr {orkload measure = x)

The second is the joint distribution of the failure and the workload

measure:

f(x) = Pr (Failure Occurs and Workload = x)

This is easily obtained from the failure matched data base, the genera-

tion of which was described in Section 3.1.

In f(x) both the failures and the workload measures are represented

as they occur in the system. Clearly the more favored values for a

given workload will contribute more to this distribution than the less

favored

19

ones.4 Using the mell known notion of conditional probability, me

define:

f(x)
g(x) = Pr (Failure Occurs I Workload = x) =

.2(x)

g(x) can now be thought of as the probability of a software failure at a

given value for workload when all values are equally represented. rig-

ure S shows the plots for A(x), fCx), and gCx) for three selected mork-

load variables: PAGEOUT, SI0, and TTItI; All software failures are con-

sidered; see the appendix for other variables and subclasses.

As a general observation we note that, where the difference between

.1(x) and f(x) is considerable, we might expect to see a workload depen-

dency in the failures. If A(x) and f(x) are similar, the relationship

is probably not significant. A g(x) distribution sharply weighted in

favor of higher workload values will clearly generate a higher risk of

failure as the load increases.

It would appear from the g(x) plots for PAGEOUT and SID that higher

values of these measures () 10 for PAGEOUT) contribute more signifi-

cantly to software related failures than the lower values. Examining

the plots for TTI1E we note that, as measured by CPU utilization, the

system was heavily loaded (close to 2.0) most of the time. The A(x) and

g(x) plots for TTIME show considerable similarity. It would therefore

appear from this cursory analysis that failures are not induced by

higher execution rates, as measured by CPU usage.

4 A rather commonplace analogy to illustrate this is that automobiles
travelling at 150 mph have a higher probability of an accident than
those travelling at 55 mph. There are however far fewer accidents at
150 mph. To obtain an accurate representation of the risks involved
in travelling we must divide the number of accidents at high speeds by
the number of autos travelling at that speed.

20

SIO (Cond.) SI0 (Load) SIO (Joint)

0600000~ so
060006 - 0.0i0.000

___ __ __ __0.06 0.000011
IR Y &0004L I

0.0002 0.00002

0 s0 100 1S 0 60 100 160 0 GO too 160
(NO) x (NO) I(U)

YEI-OW S I1MMY63 YUI-3.w 53 18MAY1 YE-Ne w 3HAM

PAGEOUT (Cond.) PAGEOUT (Load) PAGEOUT (Joint)

0.05a 0,000125
0.001 0.5o.OaoI00

.2 0.0410 2 04-0007

0.0005~ 02 0.000025

0.00o 20 40 00 0.0 20 40' so 0000 A.6 20 40 60
X (PAGEOUT) X(PAGEOUT) X (PACCOIIT)

VII-HougiS I2MAY92- IN-Mw SW 18MAY52 II-Hw SW I8MAY82

TIME (Cond.) TTIME (Load) ?TIM (Joint)

0.0020 ... 0.00M3

&ODDS4 0.00010
'~. 40.4 7 .01 ~

0.0000 0.0 0.00000
0 056 1 1.5 0 0.5 1 1.5 0 0.5 1 1.5

X (T71H) x (flfli) x (71HZ)
lUI-Ifur Be 1MAY62 YEI-Dowr I ~ 11MAY83 YE w I1MAY331

figure Ss Frequency distributions: Mx). f~x), and SWx

21

In order to quantify this effect, in particular to determine exactly

the risk or "hazard" associated with higher workload values, we employed

what we refer to as a "load hazard" model, the development and applica-

tion of which is discussed in the next section.

5.2 A SOFTUAREU HDAZARMODEL

The object of our analysis was to determine:

1. Does a higher level of system utilization result in a higher risk

of failure than a lower level?

2. Is the relationship linear with the workload variables, or is

there a nonlinear increasing effect?

In practical terms, if such an effect exists, we expect the load to act

as a stress factor. For this purpose we developed and validated a

load-hazard model which formed the basis for our tests. A detailed

description of the development and validation of this model is discussed

in (lyer 82]. Briefly, an inherent load hazard z(x) is defined as

Pr (Failure in load interval X. x+Ax)) g(x)
zCx) Z (1)

Pr (No failure in load interval CO, x)) I - G(x)

where:
gCx) is as defined in section 5.1, and

Ox) is the cumulative distribution function of g(x).

In close analogy with with the classical hazard rate in reliability

theory CShooman 68], z(x) measures the incremental risk involved in

Increasing the workload from x to x+Ax. If zCx) Increases with x, it

should be clear that the there is an increasing risk of a failure as the

workload variable Increases. If, however, z(x) remains constant for

increasing x. we may surmise that no Increased risk is involved.

22

Note that in our definition of load hazard me have removed the vari-

ability of system load by using the conditional probability gCx). This

of course is not true in practice since load is best described as a ran-

dos variable with a probability distribution; it is simply the associ-

ated load distribution, 1(x), defined above. In order to determine the

hazard for a particular load pattern, we must multiply the associated

load probability by the hazard calculated in M1). Denoting by z.Cx)

the transformed hazard, we have

z.Cx) : z(x) 1(x) C2)

He refer to the hazard z(x), as defined in CIL), as the fundamental

hazard. This is because it can be thought of as an inherent property of

a particular system and is not subject to varying load patterns. khen a

varying load pattern is taken into account, it can be thought of as

"picking out" aspects of the fundamental hazard function. This hazard

za(x) defined in (2) will be referred to as the apparent hazard, since

it is closely dependent on the load distribution.

The following example illustrates how a particular workload can mod-

ify a given fundamental load hazard z(x). Figure (a) shows a sample

fundamental hazard z(x). Note that zCx) is increasing with load. Thus,

if all load values are equally likely, the system has a higher risk of

failure at higher load values than at lower load values. Figure 9(b) is

a hypothetical load distribution where the load variable is the frac-

tional CPU utilization, with 0 for an idle CPU and I for a fully busy

CPU. Finally, Fig. 9(c) gives the apparent hazard due to the effect of

the load distribution in (a). The apparent hazard is now decreasing

simply because higher load values are less probable.

23

(a) ftdate Haa p (b) Load Ditasbuto (a) Appar Hahard

.S

as 4--

&I a a a oa g£ hO

Figure 9: Example of fundamental and apparent hazards

5.3 HAZAl PLOTS

The generation of the hazard plots and associated statistics involved

extensive data processing. In each hazard plot, zCx) or zaex) is calcu-

lated and plotted as a function of a ohosen workload variable, x. In

developing hazard plots for the load-failure data, those factors not

related to load are expected to behave as noise in a load-failure analy-

sis. If such factors are predominant, ue can expect to find no discer-

nable pattern in our hazard plots, i.e. they should appear as uncorre-

lated clouds.

An easily discernable pattern, on the other hand, mould indicate that

the load-failure dependency dominates others. The strength of such a

relationship can be measured through regression. Figs. 10, 11, and 12

depict the hazard plots for three selected load parameters (PASEIN,

M 0. and OVERHEAD). These plots relate to all software failures;

see the appendix for other variables and subclasses. The regression

coefficient RI, which is an effective measure of the goodness of fit,

is provided for each plot. Quite simply, it measures the amount of

RZV. 5/18/82

4.i tanb,-

24

variability in the data that ean be accounted for by the regression

model. R& values of greater than 0.6 (corresponding to an R) 0.75)

are generally interpreted as strong relationships CYounger 791.6

It would appear from our data that many of the workload paramters

are acting as a stress factor, i.e.# that there is an Increasing risk of

failure with Increasing load. In the ee of the interactive workload

measures OVERICAD and 31O there is no doubt that, statistioally, there

is an increased risk of a software failure as the load increases. The

correlation coefficients of 0.95 and 0.91 show that a very elose fit was

obtained and that the failures closely fit an increasing load-hazard

model. The risk of a failure also appears to increase with Increased

PASEIN. although at a somewhat lower correlation CR x 0.62). Impor-

tantly, we note that:

1. We are not seeing a statistically higher failure rate simply due

to greater execution. With CPU usage (TTI'E) as a measure, one

finds that the correlation is unaooeptable, i.e., that no rela-

tionship exists. This would appear further proof that simply a

greater execution rate (as measured by CPU utilization) is not a

major cause of the observed failures.

2. The relationship is highly non-linear, i.e. the risk of a failure

markedly increases as workload variables reach peak values. This

tends to indicate that there is a complex set of interactions

that adveraly affects the operating system as end points are

reached.

s The range of Jii from 0 to I is typically divided as follows: (O
0.25) moderately weak; (0.25P 0.5) moderate; (9.S. 0.75) moderately
strong; (0.75, 1.0) strong.

25

MO0 (Fund.) MO0 (Load) MO0 (Apparent)

as

aima6s Is3 M.635

VOYZAD (Fund.) OVERHEAD (Load) OVERHEA (Apparent)

DAMO L i +

6.3 @06 U 04 eGS 0 0.3 6.4U
Z* X(@Y*D) X (@1*5D)

vu-unOWMUTR V01-8111w OF amVI YEI-Urn - IMAVi

Figure ill Hazard plots: PAGEIN

PAGEIN (Fund.) PAGEN (Load) PAGEN (Apparent)

+T'""1 +. +

* 30 0' 6 so ass 10 o a 00 NO tooa 0 SO0 a a0 too1
IX(11n) x (tim) x (PWM)

4 Figure 121 Hazard plots: ovZRHIAD

The vertical scale is logarithmic in these plote, Indicating that the

hazard is rising sharply at peak leads.

REV. 5/18/82

26

In the next seotion we provide conjeotures on the possible causes of

this dependency and provide further interpretation of our results.

6. VIEMS ON OBSERVED RESULTS

The question of fault tolerant design has been studied by a number of

authors tsee for example Cteeht SNa SWb and [Yau $01). In order to be

failure tolerant, the software must be able to deal with adverse offects

in a mell defined manner. The ideal situation is one where an error is

detected at the earliest time, thus containing the impact of the error

to its minimum.

It is clear from our analysis that, in practice, we are far from this

ideal, even in a well structured system such as V!v370. Wlhat we observe

is that often the most severe malfunctions occur when the workload

becomes more complex. Duo to the extensive degree of inter-user and

user-system dependency under these circumstances, it is usually not pos-

sible to contain the impact of the error and a system crash ensues.

Each of the following sections discusses a particular way that system

failures are thought to relate to the quality and quantity of workload.

Examples of typical SLAC failures are given in each case. Note that a

detailed analysis was performed on every system crash to determine the

exact cause of failure. This uas done by careful tracking and record

keeping by the SLAC system support staff.

27

At numerous Potato In the design uand ceding of system compensts

implisit and explicit assumptions wre made about the envireamemt the

compenent will be subjected to. The three oases below ohareeterine the

met popular types of essumptien-Weated failures.

OuIsus ESufrM g&L Lijm itst Usually these are found only duringI extreme situatiens, where lead is abnermally high or unusual.

[xjmlj: Recently the number .*f users legged onto the ILAC V1V370

system went above Z50. A system component failed when Its table could

hold only 250 entries. The result was not catastrophic, but it did

affect system monitoring.

Synchroenization hAmn~ttima These assumptions are not usually

explicit. They are meat often due to the programmer or designer not

being able to consider that a certain sequence of events could occur as

slowly or quickly as might happen under extreme conditions.

j~xameles in a recent case a user waited a long time between typing

his user id and his password while logging on. During that period the

user directory (containing password information) ws updated by other

users (changing passwords, *tc.). When the password wus finally

entered, the system crashed because the logon process was using outdated

pointers into the directory data structure.

unatic.zate state Chanowss Many of the bugs discovered relate to

an operation that is somehow preempted by an external event. Typically

a critical section was not adequately protected from the event and a

data structure or program was forced into an inconsistent state.

26

Udla& A number of these bugs have Involved a sudden leg off dur-

ins an peration being performed eas user's virtual meohine. The sper-

stiea is only pertly completed and a system data structure Is made unu-

sable.

6.2 UE MuDLU AILIRKI

This Is an Important errer eategery, somprising roughly 27X of all sys-

tem failures. A claim made for the VV370 type of eperating system

structure Is that, because of the isolation of users and system func-

tions, reliability can be mush better [Donovan 76]. One rationale for a

hierarohical system is that the *vertioal" segregation of system fun*-

tions into a hierarchy and the "horizontal" isolation of users from each

ether affords easier fault isolation and recovery. Concievably, offend-

ing users and components can be removed in many oases without loss of

the system. He agree, and feal that the relatively high reliability of

the SLAC system is due in part to the VN9370 design. However, some of

the resiliency expected is not implemented, causing error handling to be

involved in a large fraction of system crashes. Me divide this category

as folloust

6.2.1 Nardware indund Lrors

About 22X of softuare failures (24 of 108) involved the failure of the

softuare to continue after a non-catastrophic hardware error. These

only include oases where it was determined that the system should have

been designed to continue, possibly but not necessarily, in a degraded

mode.

29

Previeu studies show that system activity, semoially IA0 activity,

to strongly related to processor failure rates Clyer $23 [Castillo 813.

Since operating systems are required to react to such failures it ean be

expected that mere software failures will *our.

f Irara:s It is slear that 1/0 errors are directly

related to the IA0 rate or the amount of data being transferred. Since

a nontrivial fraction of all Io can critically affect system operation,

the exposure to system failure can be expected to increase.

LUINj: Errors while transferring memory pages from or to an exter-

nal device can be catastrophic. Unfortunately, many systems do not

adopt a strategy of graceful degradation in such an area; the next sec-

tion addresses this question.

Micrcod E lost modern computer systems rely heavily on

microcode in various system components. In the IBM 3061 its use is per-

vasive - controlling essentially all hardware components frem the opera-

tor's console to performing failure diagnosis [Reilly 823. Microcode

oven controls and monitors the 3091's power supplies and thermal state

in real time. Such a complex microcode system provides a variety of

rare states to be entered during intricate event sequences.

.EzmLhs The 352 processor controller for the 3081 has been respon-

sible for a number of failures due to both microcode and hardware fail-

ures.

30

6.2.2 AM Harduare Induned Errors

The results given earlier in this paper demonstrate that software fail-

ures will occur more under high system stress. It therefore follows

that greeter robustness is needed in handling error situations. About

21X of software failures (23 of 108) involved the detection of inconsis-

teness in system data structures or a weak response to the failure of a

particular softuare component. In almost all of these oases it seemed

that the control program should have been able to sever or mend the ail-

Ing component and either recover or degrade gracefully. In these fail-

ures blame could not be placed on the hardware.

6.3 SOMARE CONTROL ERRORS

This category corresponds generally to the classical meaning of a bug.

There are two levels of behavior in this category. The first involves

the discovery of latent errors; the second relates to the violation of

space or timing constraints.

6.3.1 ficunyrw 91 Latmnt Errors

A process inherent in the life of a mature production system is the dis-

oovery of latent (or dormant) bugs Eusa 80. The relation of this type

of error to workload is evident. Well used sections of code tend to be

more reliable simply because bugs have already been discovered and

removed. Under normal loads these sections tend to be heavily used and

the system remains reliable. Houever, during periods of stress or

uncommon workload patterns, rarely used code can be executed, leading to

the discovery of errors.

I

31

J Ilas A prime euample of this phenomenon Involved a seotion of

spstem initialization code to handle the eas of finding a faulty stor-

ago page frame. Since in the period of over a year, the 3011 had not

encountered suh an error, the code had never boon executed. The first

time a defective frome us found, an obvious coding error me& uncovered.

In this case the syst" could not oven be restarted to repair the error.

S.3.2 RM a d = lit *l±aJion

In a typical timesharing environment the variety of demands made on the

system (complexity of the load) is directly related to the number of

users on the system. Although it is not necessarily true that the num-

ber of program states mill increse with load, it is clear that the num-

ber of timing and data structure states mill. We observe that this

increase is greater than linear with the workload variables presented in

this paper. In fact, this mushrooming of states may explain the expo-

nential increase of failure hazard with load.

One practical way to study control failures is to classify the errors

into violations in a (e.g., overuriting storage, Invalid operations)

and violations in tom (e.g., simultaneous update, invalid sequence of

operations, insufficient looking of critical data). Experience has

shown that in a stable system such as VV370 the space violations are

culled more quickly than timing violations because theys

1. are easier to understand;

2. usually manifest their effects immediately and disastrously;

3. tend to be unaffected by the dilation and contraction of time

seles caused by load.

in

32

On the other hand, timing related problems can linger in a system for

years and can be particularly sensitive to load variations. These

errors are more difficult to diagnose because specific load patterns may

be required to reproduce the problem and because the manifestation of

timing bugs is usually subtle and complex.

Examp]: At times a failure will occur that is a combination of both

a time and a space violation. Typically a complex set of events will

lead to a timing error, which triggers the overwriting of an area of

storage. Such bugs are extremely difficult to diagnose.

6.4 GRADUAL DECAY AE In. SYSTEI

A new class of non-catastrophic errors begins to surface as a system

becomes more reliable. These have to do with the gradual loss of system

resources. such as memory frames or free disk blocks due to rare housek-

eeping errors. Since, typically, these resources are redefined at each

system reload. in a relatively unreliable system their loss may never be

noticed by the system or its users. If, on the other hand, the system

runs for weeks without failure, then the gradual loss can become notice-

able.

Example: In the SLAC system, an unknown bug had existed for years

that allowed temporary disk space to be lost in small increments over a

period of time. After a 10 day period without a system reload, users

began to complain about the lack of scratch disk space. Investigation

showed that the sum of allocated and free space did not sum to the

amount *known* to be available, and the error was corrected.

I'_ _

33

7. CONCLUSION

It has been the purpose of this paper to present an analysis of software

related system failures on the IBM 3081 at SLAC. We find three broad

categories of failures: error handling, program control or logic, and

hardware-related. A statistical analysis of these failure modes shows

(not unexpectedly) a decreasing failure rate with time. This is espe-

cially true in the early part of the study. Not withstanding the

decreasing failure rate with time, me find that the occurrence of the

failures is strongly correlated with the type and level of workload

prior to the occurrence of a failure. For example, it is shown that the

risk of a softmare related failure increases in a non-linear fashion

with amount of interactive processing, as measured by parameters such as

the paging rate and the amount of overhead. The overall CPU execution

rate, though measured to be close to 1002 most of the time, is not found

to correlate with the occurrence of failures. we propose a load-hazard

model to statistically measure the above effects. Finally the paper

offers conjectures on the observed phenomenon.

As with any statistical analysis, this is not proof in itself. How-

ever, the increasing body of evidence accumulated on different computers

with differing load and failure patterns shows that workload should be

considered as a factor in reliability. The design of computer systems

will be greatly aided if this type of analysis can help uncover cause

and effect relationships in software failures.

j.1

A

34

8. ACKNOLEDGMENTS

The authors would like to thank Prof. E. J. McCluskey for his overall

guidance. Special thanks are extended to Ted Johnston and Bill Meeks at

SLAC for providing valuable insight into the reliability aspects of the

SLAC system. Me also are grateful to Dr. David Lu and Dr. George Ross-

mann for their careful reading and comments on a draft of this paper.

This work was supported in part by the U. S. Army Research Office under

contract number DAAG29-82-K-0105. and by the Department of Energy under

contract number DE-AC03-76FOO515.

The views, opinions, and/or findings contained in this document are

those of the author and should not be construed as an official Depart-

ment of the Army position, policy, or decision, unless so designated by

other official documentation.

I

,

. , .-1h. 2

35

REFERENCES

[Beaudry 79] M. D. Beaudry, "A statistical analysis of failures in the
SLAC Computing Center," Diuest al Paers, COMPCON Spring 79, pp
49-52, 1979.

[Butner 03 S. E. Butner and R. K. Iyer, "A statistioal study of
reliability and system load at SLAC", Digest, Tenth In.te tia.l
Symoosium on Fault Tolerant Comuting, October 1980.

[Boehm 78] B.1. Boehm, J.R. Brown, H. Kasper, M. Lipow. G.J. McCleod,
and M.J. Merrit, Characteristics o. Software guality, Amsterdam, The
Netherlands : North Holland, 1978.

[Curtis 80] B. Curtis. "Measurement and experimentation in software
engineering", Proceedings of hl =, vol. 68, no. 9, September
1980, pp. 1144-1157.

[Denning 80] P.J. Denning, "On learning how to predict", Procetdinas of
±11 Ji LL, vol. 68, no. 9, September 1980, pp. 1099-1103.

[Donovan 76] J. J. Donovan and S. E. Nadnick, "Virtual machine
advantages in security, integrity, and decision support systems," 1WM
Systems Journal, 15, No. 3, pp. 270-278, 1976.

[Endres 75] A. Endres, "An analysis of errors and their causes in
systems programs", IJ,= Trans. Aoftare anineering, vol. SE-1 no. 2
June 1975, pp. 140-149.

[Glass 80] R.L. Glass, "Persistent software errors", I=L Trans.
Softuar £nineering, vol. SE-7, no. 2, March 1981, pp. 162-168.

(Goal 80] A.K. Goal, "A summary of the discussion on 'An analysis of
competing software reliability models'", =L Trans. Softoarl
Engineerina, vol. SE-6, September 1980, pp. 501-502.

[Hamilton 78] P.A. Hamilton and J.D. Musa, "Measuring reliability of
computation center software", E=on. Third jM. S2onf. SIfMr
£naineerina, Atlanta GA, May 10-12 1978, pp. 29-36.

(IBM 73] IBM Corp., OS/VS System Management facilities (IM), Order No.

SC35-0004, 1973.

[Hecht 8Oa] H. Hecht, "Current issues in fault tolerant software",
P . ings COMPSAC A2, 1980, pp. 603-607.

[Hecht 8Ob] N. Hecht, "Mini-tutorial on software reliability",
Pr.oeinU s COMPSAC , 1980, pp. 383-385.

36

[lyor 81] R. K. Iyer, S. E. Butner, and E. J. MoCluskey, 'A statistical
failure/load relationship; Results of a multi-computer study,' to
appear in the I=. Transaciona nn Computers, July 1982.

[lyer 82] R. K. Iyer and 0. J. Rossetti, "A statistical load dependency
model for CPU errors at SLAC.' to appear in Tha is. FTCS-12,
TIelvth Inte tionj ltSl s. I lhjM flnFault Tolerant Computing, June
1982, Santa Monica Calif.

[Littlewood 80] B. Littlemood, "Theories of software reliability: Hom
good are they and how can they be improved?", = Trans. software
Enainterina, vol. SC-6. no. S, September 1980, pp. 489-500.

[Maxwell 78] F.D. Maxwell, ha determination o1 measures fJ ULtwAre
reliability, Final Report, HASA-CR-159960, The Aerospace Corporation,
El Segundo CAP December 1978.

[licCall 77] J.A. McCall, P.K. Richards, and G.F. Walters, 'Factors in
software quality', Tech. Renort (77CISO2), Sunnyvale, CA, General
Electric, Command and Information systems, 1977.

[Milliar-Smith 81] P. M. Milliar-Smith and R. L. Schwartz, 'Current
progress on the proof of SIFT," Thz Dis. FTCS-1i, Eleventh
International symoosium on Fault Tolerant Comp ,ing, Portland, Maine,
June 1981.

Ellusa 80] J. Musa, "The Measurement and management of software
reliability', Ere. ,J, vol. 68, September 1980, pp. 1131-1143.

[Reilly 82] J. Reilly, A. Sutton, R. Nasser, and R. Griscom, 'Processor
Controller for the IBM 3081,' JN 3. .f Research and Development, 26,
No. 1, Jan. 1982, pp. 22-29.

[Rossetti 81] D. J. Rossetti and R. K. Iyer, "A Software System for
Reliability and Workload Analysis", CRC Tech. Rpt 81-18, Center for
Reliable Computing, Computer Systems Laboratory, Stanford Univ.,
Stanford, CA. December, 1981.

(Shooman 68] M. L. Shooman, P.obbl _s.tici RLiiityI: An Enaineeri no
Approach, McGraw Hill, 1968.

(I[ensley 78] J. Wensley, et. al., 'SIFT: Design and analysis of a
fault tolerant computer for aircraft control,'B=. I[# Vol. 66,
No. 10, October 1978, pp. 1240-1254.

[Yau 80] S.S. Yau, R.C. Choung, and 0. C. Cochrane, "An approach to
error-resistant software design', Proceedina s CMPSAC .u, 1980, pp.
429-436.

EYounger 79] M1. S. Younger, A ndbook f1C Linear Regresion, Wadsworth
Ino., 1979.

37

APPENDIX

Load, Failure, and Hazard Plots
For three error types$

Control (CTL), Error Handling (EMR), Software (SV)

The top half of each page contains the Conditional Failure,
Load, and Joint Failure distributions. The bottom half
shown the corresponding Fundamental and Apparent Hazard
functions. The error type is indicated in small type just
below each plot; they are arranged in groups of three pages
each.

/I

II
"4

!4 •_ _ _

38 O~uuAM(CoMQ @"WU* (LOWd) Ovlmmaw oit)

&4lN as AAAMw

Z(lll) 1Z(010 1000
-as 141111 '11-m M SIM -*bw

PAC=Z (Comd.) PAC=I (LoAd) PO Jit

a-es
*rn Un

AIM ~ &A~V

Z(P*) X(1) Z(Yom
1*-bw 4316 SUMl, CIL's A10 "011 MUfIL loomS

PAGROUT -(Cond.) PAGEOUT (LoAd) P*GUOU (Jois)

110010a as 40& aA 0 0 o 4

soa PAM IlGIOI
VII-Ilm L~ NIU- a 71 1=111urn lw mSI

OVEsrnkI (Pt4Jd. LVMMD AAI OUMA (na t

OV&IN A (ILIdA OVNIA (Lad &4RHA (AMer

W- w CIA- INT~I 111-lW CIL 110-10W-l CIL 1111011

PAGUN (Fund.) PAGEN (Load) PhGOW (Apparmt)
..F ..1

WE-(PII.111 VIAIW AIMUr CI SU ElIL M

PAGNOUT (ha=0 PAGNOUT (1oad) PAGEOU (Appwost)

49 a as 4 0

FAEN)X(PMMO) am AIM

WI-lm CIL lin W-lw CIL Again WEI-lw CIL am.=

PUNT (COnD. PRINS (Load), Jimzl (Joint) 39

*Am.

a 'I ai IO

111,11) I PW) 21IMM)
U-law 0 SU U 101011 Mi ~ lkl~~~ U-law LUIWS

PUNCH (Coed.) PUNCH (load) PUNCH (Joint)

am n WI sUe ns I toI

&on "SA

I AIN Gums
AINS as asse

del on 0s wes . 0 w.e a m 400 no
U11-1sl W. UWAYUSL~mn UK-gkW CMAY

PINT (YUd.L) PRI (Lad)i PRINT (Apparent)

MrsI V."T"1"I ~ a.so I

2391m?) I (55) I ("W)
10-lw CIL SIS'~ Uk-lw OIL lab= U1-low CIL ISMYS

PUNCH (Fund.) PUNCH (Loatd) PUNCH (Apparent)

as OASIS+

W4 I ..I.. ..1 OAKS
* Is " s s s v g t Ss SW7UI to S l In

I (PIIIII) x () I (FIXI)
U-lw S -, -lOl CIKI Uawala4w CIL taYSo

F4M (Fund. XCAP (Lfta) RumDE (Apparent)

all

It NO mS m r On m w
R(me) liasi) m l

U1-l1hw OL 11111101 U11-lw OIL U-l*4w OIL lam=

40 M1 (Cond.) M1 soe) 1 (JOWLt)

1(m) It=) 1(6)
u-am CIL awms CILw a. am -11w CILm

ITIN (cmni.) TiE(Load) TYIN (Joint)

u-ow CIL tem.n u-wa 'su-uew AL-

V7=N (Caii.) YTINE (Load) VflME (Oint)

.AGO F . a

LOW an asss s ge a
GAINIU 0.10a. ar 4 (YoU

um. i, i u-t a.S awai ..mw. am

0 (Lu0 a)l(1oad)
X l') .61.

&"moo 060 0 141-4
-m w a.au.u-mo .au -~ .

7T= (F=nd.) TTUN (Load) MURN (Apmt)

1(TM) 11111) ("MR)
un-am a.L Suomi uI-mbW a.L -u1-sw a.CmIL

VTIM (Fund.) Vyfli (Lo0ad)' V11N (Apparet)

&amm

g060 ..-EA... zo
asm 1 1.0 1.

a.41011 CIL u-m lw a.o aml' u-Iw a. m

OvZUIKAv(cad.) OVU49M Al 3) 01 (joiu) 41

al~TPTW

9 as8 &4 as 0 as ". £4 0 @A £ £
alfm i) 2(0m) 1(WMW)

u-mm=IW~ IN isN04-b mi -Un- S

PAC=R (Cond.) PAGEIN (Load) PAGER (Joint)

2(AMm) Z(1mm)MP

PAOZOUT.(Coad.) PACIOU (Lead) PAG3OWJ (Joieit)

&Mi as SAMIN

mom
0 o a 0 so * 0 0 SAI a so 40 a

vu-mm - mNUs I-m isse -mm0 MO IWsUe

OVENIKA (Load)0am(p mt

ult-mm-- as u-mme ... Iu .-mm I

0 s s 0 *A sas 65i5i
2(N) 2)21

PAC= (Fund.) PAGEOU (Lad) PAGOU (Appret)

Iss
al

I I4 PUNCH (Cond.) PUNC (Lead) PUN (Joint)

aim Mm',ti, oe om

I-,h Imti ~ aIl ll18m

S ~ O fals~i 0 nUI2 a in~S5

PUNlCHl (Ved.) PUNCH (Load) PUc (Joint)

eam usas

Sam 0.1 &SON

ai a. i

too we 30. 40 seo tn lIn s io Wlt 4 til~0i MMN4l0 aM

1(umm) x(im) Z(MIMm)

IN-11SWE n4-O =~i ll, lll8l-Iw a llr

P (and.) (led), ,ma (Appurent)

ams

a .To IN un *u uin. 0 a "too I
(M) Z(UW 1w)

PUNCH (7un.) PUNCH (Load) PUNCH (Appusunt)

a+ +

ILU

* i It I tII Naim

2 (11) x(piM) I (1,mini
u-mhs nmn - u*-mm aMEmo u-mw nM SIM

4 (und.) raw= (Lewd Y (A t)

,~O .. '.,-...,O ,.
MIMS) a~s (mm) Iso (M I)If-wm o :-mb IM" namJMnv

M (Cond.) M1 (load) 43J~n)

~ L I ~ 1 0 ---~

0-h so inb to e Inin-bllIn In313

MMZN (Cond.) TTflh (Load) TimE (Joint)

S~~. YINE Jit

3(1133) W011) ME
iu-inw a U-Nm -MM M U U1-11M -M1

MO (Fund.) 30 (Load) 310 (Appaent)

afiflM- LTho-4U
___ ___ ___

+ +Ul

I(110) 1(30) 1(30)
Vu-lhw -11 -111. U-34m 1111 aMIrNT vui au Mum

ITNE (Fund.) 77MN (Load) TMfi (Apparent)

W. W.. II
+ 1e.

* a.a a~ * a a a e a a +

U-am - III-am M 11101-110 m

VNN (Pond.) WUE (lood). V1= (Apparent)

us 3-4

I Le8.
1() 1() X()

u-am ~ ~ -me -- am me----m

44 O~MOEMM(cond.) ovuuWn CLAM) ovERHEA (joint)

lagS.SAM

* 18 &4 18 u 18 4 gS 6 18 4
1() I(O 1 iS) ZIS61mI)

PAGEIN (Cond.) PAGI (Load) PACEI (Joint)

am# *A - LWM
0 w0. as ana. u-0Mw as aniSri u-w 0a saI

PAGEOUT(Cond.) PAGEOUT (Load) PAGE=W (Joint)

F F.1F

o 3 40 0 0 a sO0 40 as
I (PACUF) z P&iOUN r PAFCOU7)

ul-Nlm as MAIN, u1-11Om s gu1AM u-.w IMuAMa

OVEEEKAD(Fmd.) OVERHEA (Load) OVERHAD (Apparent)

Ic-a
as0U0010

PA=(ud)PAGERI (load) PAGEIII (Apparet)

ssas
104 + -+

X() L(,iL
u-urn as ISOM u1-mw or "Mam um sm

PACMUT.(land.) PAGEOUT (load) PAGEOUT (Apparvat)

* 94000a5 as 40 s w aO
I(Plan") xqPA1111) 2 (PA=f)

u-m4w aS mum u-mw Off IMuM u-w ff mas

PRMP (COCdA) PFIRM (load)- P336 (joint) 45

M --- I -- m u--

UM...~L~r" I.... -i
W114011 95 n 55Itoa 1 IW

x(1WW) Z(IIP) x(PUWll)
11-1Mwu III III-11W a Imm U1-sm IN 11UMIN

PUNCH (Cmnd.) PUNCH (L,011d) PUNCH (Joint)

asm s.UN

*AM -LIL

* au~ u so"toi a a In I s an s s I
U-Elm) S SWAUS1II 311E masUNw vi&i

R4IADIR (Cond.) IADER (Load) READER (Joint)

41664009 a 1 6 sa1 01

0EU I 400im In-E a go 40mUS InE -0 J so

u I-Il ssMOm Im -1wINIAI

19-4

0 Oson.s VetoA sa nSO s oi oa touto
x (111l) x (MM1) I(1?

IN-Sw IIS ll Uo-iEw Nm - SAUS IN IIIIIAnIM

PUNCH (Fund.) PUNCH (Load) PUNCH (Apparent)

loc to +s + +

s is in IaI a a I" n aa sa " In
x(31~~(53560) 1(OII

US-Em IMU Un-am i a 11111 U11-E1M IN 531513

mi= ud.) R m(LOW~ RUMDE (Apaet)

* 14AMs
sm*IM

IS Sl 4s as an 9s S 0 m 4"
2() Z()ilk

U11-1111 or 1011im.10 U11-Em1 Ile a41011111 u-mw IM a41111111

46 110 (Cond.) WO0 (Load) 310 (joint)

*m Wm am am*APa a 5
0611111 D(3) 100

TflN (Cond.) TuNE (Load) TflN (joint)

SMu 0,0011110a

a s a1.6 0 a a 1.6 0 ~ a 1.6
I () z 1Y1)I

VA-Nw Ie IMAYM: "-Now ifa munE tmI-111111w IIIamINEII

WINE (Cond.) VYIE (Load)- VYTW (joint)

@AMust
Lam muan

o as 1 1.s a s aW1g as6 1oeg .6
I(xY(VI) x () X(YN

tm-mwow aIune. ft immw i aII,.TIII tm-now if amsAT

310 (Fund.) S10 (Load) 510 (Apparent)

-nl mm ++.
mam

Oms age ,+ ..me..
* 0 am0 am 0 Go amo amo so amo am0

I(30) 1 (0) 1 (6)
U-Nwr IV aIIIIE.I UE-Nw ifINUN U11001T-snwi a 1141111

TIM (Fund.) TflN (Load) TfM (Apparent)

-+ +

0 m L±Ldbb 1b.i £0 all 1 1. 0 s

+ I

*ame
*AM ae

o 9 a 1 a.9 e m as aIs 0 056 1 a.

Ul-Nbw af tmm;N Ui-Nw if tmiAn tm-Nw if MAYltM

